The Reaction of 1,2,3,4-Tetrahydro-2,5-dimethyl-5H-pyrido[4,3-b]indole with Arenesulphonyl Azides

By A. S. Bailey,* A. G. Holton, and J. F. Seager, Dyson Perrins Laboratory, South Parks Road, Oxford

The reaction of 1,2,3,4-tetrahydro-2,5-dimethyl-5H-pyrido[4,3-b]indole with toluene-p-sulphonyl azide yields 1,2,3,4,5,6-hexahydro-3,6-dimethyl-1-p-tolylsulphonyl [1,3]diazocino[5,4-b]indole. Toluene-p-sulphonyl azide dehydrogenates 1,4-dihydro-9-methylcarbazole yielding 9 -methylcarbazole.

The reactions of N-methyltetrahydrocarbazole and of N-methyltetrahydrocyclopent[b]indole with arenesulphonyl azides have been reported. ${ }^{1}$ We have now examined the reactions of $1,2,3,4$-tetrahydro-2,5-di-methyl-5 H -pyrido $[4,3-\mathrm{b}]$ indole (I) with azides to determine the effect of introducing a heteroatom into the reduced ring of tetrahydrocarbazole.

Compound (I) reacted smoothly with toluene- p sulphonyl azide forming a colourless crystalline adduct (II; $\mathrm{R}=\mathrm{Ts}$) $(50 \%$ yield); the i.r. spectrum of the compound contained no bands in the regions $1700-1600$ ($\mathrm{C}=\mathrm{N}$) and $3600-3200(\mathrm{NH}) \mathrm{cm}^{-1}$ and the u.v. spectrum was similar to that of 1,2 -dimethyl- $3-p$-tolylsulphonylaminoindole. ${ }^{2}$ These observations eliminate structures of types (III)-(VI) (cf. the products obtained from N-methyltetrahydrocarbazole ${ }^{1}$). The n.m.r. spectrum of the adduct ($\mathrm{II} ; \mathrm{R}=\mathrm{Ts}$) (in CDCl_{3}) contained signals at $\tau 7.45-7.85(4 \mathrm{H}, \mathrm{m}), 7.63$ (s, tosyl Me), 7.55 (s, NMe), 6.45 (s, indole NMe), $5.62(2 \mathrm{H}, \mathrm{s}), 2 \cdot 70-2.97(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar})$, and $2 \cdot 39-2 \cdot 46(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$. The signal of the

[^0]isolated methylene group (5.62) is downfield of the signal from the protons at $\mathrm{C}-1 \quad(\tau 6.32)$ in compound (I). Compound (II; $\mathrm{R}=\mathrm{Ts}$) readily formed a methiodide; in the n.m.r. spectrum of this compound the signal of the methylene group appeared as a broad band (τ $4 \cdot 2-5 \cdot 2)$ suggesting that the rate of inversion of the seven-membered ring had been reduced; also the signals of some of the aromatic protons had moved upfield, the highest field signal appearing at $\tau 3 \cdot 70$. This shift may be caused by attraction between the positively charged nitrogen atom and the oxygen atoms of the sulphonyl group. Such an interaction orientates the toluene ring over part of the indole ring, producing mutual shielding. Upfield shifts of $0.5-1.0$ p.p.m. for the $\mathrm{C}(3) \mathrm{H}$ signal on protonation of compounds such as (VII) and (VIII) have been reported. ${ }^{3}$ Boiling the methiodide with alkali gave the 2 -vinylindole (IX), shown to contain an NH group ($\nu_{\text {max }} 3240 \mathrm{~cm}^{-1}$) and a vinyl group (n.m.r.). There was no n.m.r. signal

[^1]corresponding to the group $\mathrm{CH}_{2} \cdot \mathrm{NMe}_{2}$. The alternative 3 -vinylindole structure (X) is unlikely to be easily derived from a pyrido $[4,3-b]$ indole, and it is known that 3 -vinylindoles are unstable in alkali. ${ }^{4}$ The u.v. spectrum

(I)

(III)

(V)

(VII)

(IX)

(II)

(VI)

$\mathrm{HN} \cdot \mathrm{SO}_{2} \mathrm{Ph}$
(VIII)

(X)

(XI)
Throughout, Ts $=p-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2} ; \mathrm{CBs}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}$
of compound (IX) was similar to that of compound (XI), prepared by heating the methiodide of (I) with alkali.

More evidence for structure (II) was obtained by treating the compound with cyanogen bromide in methylene chloride. The product could not be obtained crystalline but when boiled with methanol yielded a crystalline substance (XII; $\mathrm{R}=\mathrm{OMe}$), probably via the intermediate (XII; $\mathrm{R}=\mathrm{Br}$). The halogen atom in (XII; $\mathrm{R}=\mathrm{Br}$) would be reactive, ${ }^{5}$ and it seems unlikely that the alternative product (XIII) of the Von

[^2]Braun reaction would react with methanol under neutral conditions to form an ether. Further, attack would be expected at the isolated CH_{2} group of (II). ${ }^{6}$ The formation of ethers by the Von Braun reaction on yohimbine alkaloids has been reported. ${ }^{7}$ The n.m.r.

spectrum of compound (XII; $\mathrm{R}=\mathrm{OMe}$) (in CCl_{4}) contained signals at $\tau 7.60(\mathrm{~s}$, tosyl Me), 7.08 (s, cyanamide Me), ${ }^{7} 6 \cdot 6-6.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 6.56(\mathrm{~s}, \mathrm{OMe})$, $6.21(\mathrm{~s}$, indole NMe), $5 \cdot 12(2 \mathrm{H}, \mathrm{q}, J 10 \mathrm{~Hz}), 3.82(\mathrm{lH}, \mathrm{d}$, $J 8 \mathrm{~Hz}, \mathrm{Ar}), 3 \cdot 38(\mathrm{lH}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 2 \cdot 8-3 \cdot 2(2 \mathrm{H}, \mathrm{m}$, Ar), $2.92(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar})$, and $2.52(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, Ar), showing non-equivalence of the methylene protons and marked upfield shifts of the aromatic protons [$c f$. the upfield shifts in (XIV) $\left.{ }^{3}\right]$. Warming compound (I) with p-chlorobenzenesulphonyl azide gave the adduct (II; $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}$); the properties of this compound and Hofmann degradation to the analogue of compound (IX) confirmed its structure.

As an alternative to the Von Braun reaction, tertiary amines may be cleaved by phenyl chloroformate. ${ }^{8}$ The

[^3]product of the reaction between compound (II; $\mathrm{R}=$ $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}$) and phenyl chl Gho° ormate was a glass which could not be crystallised; ...wever, dissolving the glass in ethanol gave a small quantity of a crystalline solid whose spectroscopic properties support structure

Compound (XVI; $\mathrm{R}=\mathrm{Ts}$) was also obtained (9% yield) by prolonged boiling of a solution of compound (II; $\mathrm{R}=\mathrm{T}$ s) in propanol with tosyl azide. This observation suggested that (XVI; $\mathrm{R}=\mathrm{T}$) was being formed from (II) via the ion (XVII; $\mathrm{R}=\mathrm{Ts}$) (cf. the

Scheme 1
(XV). From the mother liquors of the preparation of (II; $\mathrm{R}=\mathrm{Ts}$) a small quantity of a second product (XVI; $\mathrm{R}=\mathrm{Ts}$) was isolated. The compound had the molecular formula $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{4}$ (high resolution mass spectroscopy) and the stain produced by iodine on t.l.c. plates (bright red) was very similar to that produced by iodine on t.l.c. spots of 1,2-dimethyl-3-p-tolylsulphonylaminoindole. The base peak in the mass spectrum of
(XVI; $\mathrm{R}=\mathrm{Ts}$) was $m / e 198\left(\mathrm{CH}_{2}=\stackrel{+}{\mathrm{N} M e T s}\right)$. The n.m.r. spectrum was in agreement with structure (XVI; $\mathrm{R}=\mathrm{Ts}$) and showed the upfield shift of the aromatic signals as described for compound (XII; $\mathrm{R}=\mathrm{OMe}$).
reaction of tosyl azide with aniline and with pyridine ${ }^{9}$); the seven-membered ring of the latter could then open with loss of formaldehyde. In support of this hypothesis we observed that compound (II; $\mathrm{R}=\mathrm{T}$ s) reacted smoothly at room temperature with acetic anhydride forming (XVI; $\mathrm{R}=\mathrm{Ac}$), presumably via (XVII; $R=A c)$. The spectral properties of the compound were in good agreement with this structure: in the n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ some of the aromatic signals had shifted upfield and the $\mathrm{CO} \cdot \mathrm{CH}_{3}$ signal consisted of

[^4]
$\mathrm{CH}_{2}=\stackrel{+}{\mathrm{N}} \mathrm{T}_{\mathrm{s}} \mathrm{Me}$

Scheme 2
two singlets at 7.91 and $8 \cdot 16$ (ratio ca. 2:1). On adding a drop of trifluoroacetic acid the signals moved to $\tau 7.69$ and 8.01 (ratio $2: 1$); in pyridine solution these signals appeared at $\tau 7.94$ and 8.05 (ratio $1: 2$). The acetyl group in N-methylcyclohexylacetamide shows two signals in the n.m.r. spectrum. ${ }^{10}$ Finally, compound ($\mathrm{II} ; \mathrm{R}=\mathrm{Ts}$) was hydrolysed by warming with dilute methanolic hydrochloric acid, forming the crystalline hydrochloride of (XVI; $\mathrm{R}=\mathrm{H}$). The free base (XVI; $\mathrm{R}=\mathrm{H}$) was a low-melting solid; we were unable to find a suitable solvent for recrystallisation but the compound was homogeneous on t.l.c. and its properties were in good agreement with the assigned structure. In a separate experiment compound (II; $\mathrm{R}=\mathrm{Ts}$) was heated with Brady's reagent, yielding formaldehyde 2,4-dinitrophenylhydrazone.
We consider that structure (II) is formed by the addition of the sulphonyl azide to the tetrahydropyridoindole followed by loss of nitrogen and rearrangement giving (XVIII) (cf. the reactions of N-methyltetrahydrocarbazole ${ }^{1}$). Ring a then opens forming species (XIX), and the seven-membered ring is formed by TsN^{-}attacking the $\mathrm{CH}_{2}=\stackrel{+}{\mathrm{N}} \mathrm{Me}-$ group. A similar type of reaction sequence is observed in the formation of tetrahydropyrimido $[3,4-a]$ indoles from $\quad 1,3$-dialkyl-4piperidones $\left[(\mathrm{XX}) \longrightarrow\right.$ (XXI)]. ${ }^{11}$ The mass spectrum of compound ($\mathrm{II} ; \mathrm{R}=\mathrm{Ts}$) is given in Scheme 1 ; the molecular ion was intense (molecular compositions determined by high resolution spectrometry are indicated \dagger). In the spectrum of compound (IX; Ts replaced by $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}$) (Scheme 1) the molecular ion is weak and the base peak, although it has the same composition as the base peak in the spectrum of (II), is probably of different structure since loss of HCN giving $m / e 144$ is important in the spectrum of (II) but not in the spectra of (IX) and (XII; R $=\mathrm{OMe}$) (Scheme 1).

There were striking differences in the mass spectra of compounds (XVI; $\mathrm{R}=\mathrm{Ts}$) and (XVI; $\mathrm{R}=\mathrm{Ac}$) (Scheme 2); for the former the base peak was $m / e 198$ whereas for the latter the corresponding peak, $m / e 86$, was very small. The spectrum of ($\mathrm{XVI} ; \mathrm{R}=\mathrm{H}$) is included for comparison. Note that $m / e 159(M-\mathrm{Ts})$ is the base peak in the mass spectrum of 1,2 -dimethyl-$3-p$-tolylsulphonylaminoindole. ${ }^{2}$

9-Methyl-1,4-dihydrocarbazole reacted smoothly with tosyl azide; the only product isolated was N-methylcarbazole (80% yield); presumably the initial adduct formed from the dihydrocarbazole and tosyl azide lost nitrogen and toluene- p-sulphonamide, forming the fully aromatic compound.

EXPERIMENTAL

General directions and instruments used have been reported. ${ }^{1}$ 1,2,3,4-Tetrahydro-2-methyl-5 H -pyrido[4,3-b]${ }^{10}$ R. Moriarty, J. Org. Chem., 1963, 28, 1296; W. A. Thomas, ' Annual Reports on N.M.R. Spectroscopy,' Academic Press, London, 1970, vol. 3, p. 109.
${ }_{11}$ C. J. Cattanach, A. Cohen, and B. Heath-Brown, J. Chem. Soc. (C), 1971, 359; A. Eböthner, P. Niklaus, and R. Süess, Helv. Chim. Acta, 1969, 52, 629.
indole, ${ }^{12} \mathrm{~m} . \mathrm{p} .170-171^{\circ}$, was methylated ${ }^{13}$ to form the 2,5-dimethyl derivative (I), m.p. 68-69 (lit., ${ }^{14} 69-70^{\circ}$); $\lambda_{\text {max }} 228,284$, and $293 \mathrm{~nm}(\varepsilon 30,600,6340$, and 5690$)$; $\tau\left(\mathrm{CDCl}_{3}\right) 7 \cdot 45(3 \mathrm{H} . \mathrm{s}, \mathrm{NMe}), 7 \cdot 18[4 \mathrm{H}, \mathrm{s}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(4) \mathrm{H}]$, $6.40(3 \mathrm{H}, \mathrm{s}$, indole NMe$), 6.32[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}]$, and $2.6-3.0$ (4H, m, Ar).

1,2,3,4,5,6-Hexahydro-3,6-dimethyl-1-p-tolylsulphonyl[1,3]-diazocino[54-b]indole ($\mathrm{II} ; \quad \mathrm{R}=\mathrm{Ts}$).-(a) Compound (I) $(0.25 \mathrm{~g})$: luene-p-sulphonyl azide $(0.44 \mathrm{~g})$ in propanol $(2 \mathrm{ml})$ were heated (steam-bath) for 3 h . Next day solid ($0.20 \mathrm{~g}, 45 \%$; m.p. $187-188^{\circ}$) was collected.
(b) The pyridoindole (1.9 g) and the azide $(2.3 \mathrm{~g})$ were heated together (45°; oil-bath) for 2 days; a little methanol was added and the solid was collected ($2 \cdot 0 \mathrm{~g}$). The product formed prisms, m.p. 187-189 (from ethanol) (Found: C, $65.6 ; \mathrm{H}, 6.6$; $\mathrm{N}, 11 \cdot 2$; $\mathrm{S}, 8.8 . \quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C , $65.1 ; \mathrm{H}, 6.2 ; \mathrm{N}, 11.4 ; \mathrm{S}, 8.7 \%$) ; $\lambda_{\max } 225,283$, and $291 \mathrm{~nm}(\varepsilon 45,900,10,080$, and 9280$)$. A solution of compound ($\mathrm{II} ; \mathrm{R}=\mathrm{Ts}$) (0.73 g) in methyl iodide (4 mI) was kept at room temp. for 24 h ; the solid was collected (0.99 g) and crystallised from ethanol to give needles of the methiodide, m.p. 212-214 ${ }^{\circ}$ (Found: $\mathrm{N}, 8 \cdot 0 . \quad \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{IN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{N}, 8 \cdot 2 \%)$; $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.55(3 \mathrm{H}, \mathrm{s}$, tosyl Me), $6.78(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.3-6.9[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 6.25$ $(3 \mathrm{H}, \mathrm{s}$, indole NMe) $4.2-5 \cdot 2[2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}], 3.70(1 \mathrm{H}, \mathrm{d}$, $J 8 \mathrm{~Hz}, \mathrm{Ar}), 3.22(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 2.91(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$, $\mathrm{Ar}), 2.44-2.63(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and $2.30(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, lowfield half of Ts signal).

1-Methyl-3-p-tolylsulphonylamino-2-vinylindole (IX).The foregoing methiodide (0.36 g) was dissolved in a mixture of ethanol (10 ml) and water (10 ml); the solution was boiled and potassium hydroxide (0.2 g) in ethanol $(2 \mathrm{ml})$ and water (2 ml) was added. After heating for 50 min all the starting material had reacted (t.l.c.); the solvent was removed and the residue shaken with chloroform $(100 \mathrm{ml})$ and water $(150 \mathrm{ml})$. The chloroform extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue was crystallised twice from methanol ($0 \cdot 1 \mathrm{~g}$). The olefin formed prisms, m.p. 161-163 ${ }^{\circ}$ (Found: C, 65.9 ; H, 5.4 ; N, 8.5 . $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $66.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 8.6 \%$) ; $\lambda_{\text {max. }} 227$ and 304 nm ($\varepsilon 16,050$ and 8280) (1 -methyl-2-vinylindole ${ }^{15}$ has $\left.\lambda_{\text {max. }} 305 \mathrm{~nm}\right)$; $\nu_{\text {max }} 3240 \mathrm{~cm}^{-1}(\mathrm{NH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 7 \cdot 62$ $(3 \mathrm{H}, \mathrm{s}$, tosyl Me) $6.29(3 \mathrm{H}, \mathrm{s}$, indole NMe), $4.62(1 \mathrm{H}, \mathrm{d}$, $\left.J 12 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, J 18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{O}}\right), 3.81 \mathrm{br}(1 \mathrm{H}, \mathrm{NH}$, exchanged in $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.43\left(1 \mathrm{H}, \mathrm{q}, J 12\right.$ and $\left.18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right)$, $3.0-3.16(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 2.70-2.98(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and 2.43 $(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, low-field half of tosyl signal).

1-Methyl-2-[2-(N-methyl-N-cyano)amino $]$ ethyl-3-(N -methoxymethyl-N-p-tolylsulphonyl)aminoindole (XII; $\mathrm{R}=$ OMe).-Cyanogen bromide (1.47 mmol) in dry dichloromethane (15 ml) was added to compound (II) $(0.512 \mathrm{~g}$, 1.39 mmol) in dichloromethane (10 ml). Next day more cyanogen bromide (50 mg) was added, the solution was boiled for 3 h , and the solvent was removed in vacuo. Methanol (20 ml) was added; the solution was boiled for 1 h and most of the solvent was removed. Next day the solid was collected (0.18 g ; m.p. 131-134 $)$. Recrystallisation from methanol gave prisms, m.p. 133-135 (Found: C, $61.7 ; \mathrm{H}, 6.2 ; \mathrm{N}, 12.9 \% ; M$, 426. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}, 6 \cdot 1 ; \mathrm{N}, 13.1 \% ; M, 426)$, $\lambda_{\text {max. }} 222$, 282, and $291 \mathrm{~nm}\left(\varepsilon 35,300,7590\right.$, and 6450) ; $\nu_{\max }$ (Nujol) $2220 \mathrm{~cm}^{-1}$.

p-toly

${ }^{12}$ V. Boekelheide (2) Ainsworth, J. Amer. Chem. Soc., 1950, 72, 2132; A. H. Cook and K. J. Reed, J. Chem. Soc., 1945, 399.

1-p-Chlorophenylsulphonyl-1,2,3,4,5,6-hexahydro-3,6dimethyl $[1,3]$ diazocino $[5,4-\mathrm{b}]$ indole.-Compound (I) (4•4 g) and p-chlorobenzenesulphonyl azide (6.1 g) were boiled in methanol (15 ml) for 5 h . Next day the solid (4.0 g) was collected and recrystallised from ethanol, forming prisms, m.p. 145-166 (Found: N, 10.8\%; M, 389. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{N}, 10.8 \% ; M, 389\right)$; $\lambda_{\text {max }} 225,284$, and $292 \mathrm{~nm}(\varepsilon 40,000,7940$, and 7180); no bands in i.r. spectrum corresponding to NH or $\mathrm{C}=\mathrm{N}$; $\tau\left(\mathrm{CDCl}_{3}\right) 7 \cdot 45-$ $7.85(4 \mathrm{H}, \mathrm{m}), 7.56(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.4(3 \mathrm{H}, \mathrm{s}$, indole NMe), $5 \cdot 60 \mathrm{br}[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(2) \mathrm{H}], 2 \cdot 6-2 \cdot 9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and $2 \cdot 28-2 \cdot 32$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$. The methiodide formed white needles, m.p.
 $\mathrm{S}, 6 \cdot 3 . \quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClIN}_{3} \mathrm{O}_{2} \mathrm{~S} \mathrm{r} 1 \mathrm{l} \cdot 4$; s $\mathrm{C}, 45 \cdot 2 ; \mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 7 \cdot 9$; $\mathrm{S}, 6.0 \%$) ; $\lambda_{\text {max. }} 224,283$, and $291 \mathrm{~nm}(\varepsilon 70,400,13,700$, and $12,200)$; $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.74\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 6.4-6.9(4 \mathrm{H}, \mathrm{m})$, $6.23(3 \mathrm{H}, \mathrm{s}$, indole NMe), $4 \cdot 1-5 \cdot 1(2 \mathrm{H}, \mathrm{s}), 3.66(1 \mathrm{H}, \mathrm{d}$, $J 8 \mathrm{~Hz}, \mathrm{Ar}), 3.16(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 2.84(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$, Ar), $2.50(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 2.30(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, high-field half of ArSO_{2} signal), and $2 \cdot 14(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, low-field half of ArSO_{2} signal).

3-p-Chlorophenylsulphonylamino-1-methyl-2-vinylindole (IX; Ts replaced by $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}$). -This compound, obtained (50% yield) by the action of alkali on the methiodide, formed pale yellow prisms, m.p. 146-147 ${ }^{\circ}$ (Found: C, 59.1; H, 4.4; N, 7.8; S, 9.2\%; M, 346. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 58.95 ; \mathrm{H}, 4.4 ; \mathrm{N}, 8.1 ; \mathrm{S}, 9.3 \%$; $M, 346)$; $\lambda_{\text {max. }} 231$ and $303 \mathrm{~nm}(\varepsilon 39,600$ and 18,300); $\nu_{\text {max }}$ (Nujol) $3250 \mathrm{~cm}^{-1}(\mathrm{NH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 6.27(3 \mathrm{H}, \mathrm{s}$, indole NMe), $4.56\left(1 \mathrm{H}, \mathrm{q}, J 1.5\right.$ and $\left.12 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right), 4.29(1 \mathrm{H}, \mathrm{q}$, $J 1.5$ and $\left.18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{C}}\right), 3.65 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, exchanged in $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.41\left(1 \mathrm{H}, \mathrm{q}, J 12\right.$ and $\left.18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right), 2 \cdot 7-3 \cdot 1(4 \mathrm{H}, \mathrm{m}$, Ar), $2.65(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz})$, and $2.34(2 \mathrm{H}, J 9 \mathrm{~Hz})$.

3-(N-Ethoxymethyl-p-chlorophenylsulphonylamino)-1-methyl-2-[2-(N-methylphenoxycarbonylamino)ethyl]indole
(XV).-Compound (II; $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}$) ($1 \cdot 04 \mathrm{~g}$) in dry dichloromethane (15 ml) was added to a solution of phenyl chloroformate $(0.42 \mathrm{~g})$ in dichloromethane (3 ml). Next day dichloromethane (80 ml) was added and the solution was washed with aqueous sodium carbonate (10%; 100 ml) and 2 m -hydrochloric acid (100 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation yielded a glass which could not be obtained crystalline. A solution in ethanol ($4-5 \mathrm{ml}$) slowly deposited a white solid (25% yield), m.p. 135-138 (Found: C, $59.9 ; \quad \mathrm{H}, 5.3 ; \quad \mathrm{N}, 7.4 \% ; M$, $555 . \quad \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 60.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 7.6 \% ; M, 555) ; \nu_{\text {max. }}$ (Nujol) $1724 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \quad \tau\left(\mathrm{CCl}_{4}\right) 8.82\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$, $6.81(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.25-7.1\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 6.21(3 \mathrm{H}, \mathrm{s}$, indole NMe), $5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 3.70(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, $\mathrm{Ar}), 2 \cdot 6-3.4(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and $2.43(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, lowfield half of ArSO_{2} signal); m/e 555 ($M, 5 \%$), $380(M-$ $\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}, 50 \% ; m^{*} 260 \cdot 2$), $229\left(380-\mathrm{MeNH} \cdot \mathrm{CO}_{2} \mathrm{Ph}\right.$, 97%; $m^{*} 138 \cdot 0$), $183\left(229-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}, 100 \% ; m^{*} 146 \cdot 4\right)$, and $171\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2}, 60 \%\right)$.

1-Methyl-2-[2-(N-methyl-p-tolylsulphonylamino)ethyl]-3-p-tolylsulphonylaminoindole (XVI; $\mathrm{R}=\mathrm{Ts}$).-(a) The methanolic mother liquors from the preparation of compound (II; $\mathrm{R}=\mathrm{Ts}$) [preparation (b)] were evaporated and the residue was chromatographed on silica. Elution with benzene-ethyl acetate ($9: 1$) gave compound (XVI; R $=\mathrm{Ts}$) (2% yield), plates, m.p. $161-164^{\circ}$ (from methanol) (Found:
${ }^{13}$ K. T. Potts and J. E. Saxton, Org. Synth., 1960, 40, 68.
14 U. Hōrlein, Chem. Ber., 1954, 8', 463.
${ }^{15}$ F. E. Ziegler, E. B. Spitzner, and C. K. Wilkins, J. Org. Chem., 1971, 36, 1759.
M, 511.1599. $\quad \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{4}$ requires $M, 511 \cdot 1587$); $\lambda_{\text {max }}$ 224 and $283 \mathrm{~nm}(\varepsilon 29,100$ and 8510$)$; $\nu_{\text {max }}$ (Nujol) $3259 \mathrm{~cm}^{-1}$ $(\mathrm{NH}): \tau\left(\mathrm{CDCl}_{3}\right) 7.66$ and $7.63(2 \times$ tosyl Me), $7.23(3 \mathrm{H}, \mathrm{s}$, NMe), $6.5-7 \cdot 1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 6.26(3 \mathrm{H}, \mathrm{s}$, indole NMe), $3.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right.$, exchanged in $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.52(1 \mathrm{H}, \mathrm{d}$, $J 8 \mathrm{~Hz}, \mathrm{Ar}), 3 \cdot 25(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 2 \cdot 6-3 \cdot 1(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and $2 \cdot 3-2 \cdot 5$ ($4 \mathrm{H}, \mathrm{m}$, low-field halves of 2 tosyl signals).
(b) From the preparation of compound (II; $\mathrm{R}=\mathrm{Ts}$) in propanol the indole ($\mathrm{XVI} ; \mathrm{R}=\mathrm{Ts}$) was isolated in 9% yield.
(c) Compound (II; $\mathrm{R}=\mathrm{Ts}$) (500 mg) and tosyl azide (300 mg) were boiled under reflux in propanol (25 ml) for 7 days. The solvent wa tall $^{\text {moved }}$ and the residue was filtered through silica in b_{2}...ene-ethyl acetate ($9: 1$). The solvent was removed and the residue crystallised from benzene, yielding toluene- p-sulphonamide (150 mg). The residue from this recrystallisation was recrystallised from methanol, affording (XVI; $\mathrm{R}=\mathrm{Ts}$) (yield 13%), identical (i.r.; t.l.c.) with the sample isolated in (a).

1-Methyl-2-[2-($\mathrm{N}-$ methylacetamido)ethyl $]-3-\mathrm{p}-$ tolylsulphonylaminoindole (XVI; $\mathrm{R}=\mathrm{Ac}$).-The indole (II; $\mathrm{R}=\mathrm{Ts}$) (200 mg) was dissolved in the minimum of chloroform, and acetic anhydride (1 ml) was added. Next day the solvent was removed in vacuo; methanol was then added, the mixture was left for 1 h , and the solvent was removed. This process was repeated until all the excess of acetic anhydride had been destroyed. The residue was triturated with light petroleum (b.p. $60-80^{\circ}$) and then recrystallised from methanol (yield 150 mg) to give prisms, m.p. 195-197 ${ }^{\circ}$ (Found: C, 62.5; H, 6.4; N, 10.3 ; S, $8.2 \% ; M$, 399. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 63 \cdot 1 ; \mathrm{H}, 6 \cdot 3$; $\mathrm{N}, 10.5 ; \mathrm{S}, 8.0 \% ; M, 399$) ; $\nu_{\max }$ (Nujol) $1615 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\tau\left(\mathrm{CDCl}_{3}\right) 7 \cdot 63$ (tosyl Me), $6.92(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6 \cdot 3-7 \cdot 1(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C} H_{2} \cdot \mathrm{CH}_{2}\right), 6.23(3 \mathrm{H}, \mathrm{s}$, indole NMe), $3.48(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, Ar), $3.41\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right.$, exchanged in $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.23(1 \mathrm{H}, \mathrm{t}, J$ $8 \mathrm{~Hz}, \mathrm{Ar}), 2.7-3.1(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 2.38(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, lowfield half of tosyl signal) (the acetyl signals are reported in the main section); τ (pyridine) 7.84 (s, tosyl Me), 7.12 (NMe), and 6.31 (indole NMe).

1-Methyl-2-(2-methylaminoethyl)-3-p-tolylsulphonylaminoindole ($\mathrm{XVI} ; \mathrm{R}=\mathrm{H}$) Hydrochloride.-Compound (II; $\mathrm{R}=\mathrm{Ts}$) (530 mg) was dissolved in methanol (4 ml) and 2 m hydrochloric acid (4 ml). The solution was warmed $\left(70^{\circ}\right)$ for 35 min . Evaporation in vacuo yielded a white solid which formed needles (0.25 g), m.p. 247-249 (from ethyl acetate-methanol) (Found: C, 58.1; H, 6.0; N, 10.3. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 6 \cdot 1 ; \mathrm{N}, 10 \cdot 6 \%$); $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7 \cdot 64$ (tosyl Me), $7 \cdot 42(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.96 \mathrm{br}(4 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 6 \cdot 27(3 \mathrm{H}, \mathrm{s}$, indole NMe), $2 \cdot 6-3 \cdot 2(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $2.40(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, low-field half of tosyl signal), 0.65 br $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$, and $0.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; on adding $\mathrm{D}_{2} \mathrm{O}$ the two signals at $\tau 0.50$ and 0.65 disappeared. On adding sodiun
carbonate to a solution of the hydrochloride, the free base (XVI; $\mathrm{R}=\mathrm{H}$) separated; m.p. 63-71 ${ }^{\circ}$. We did not find a suitable solvent for recrystallisation although the compound gave only one spot on t.l.c. and a molecular ion in the mass spectrum at m / e 357. The n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ agreed with the structure: $\tau 7.63(3 \mathrm{H}, \mathrm{s}$, tosyl Me$)$, $7.60(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.30\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{2} \cdot \mathrm{CH}_{2}\right), 6 \cdot 40(3 \mathrm{H}, \mathrm{s}$, indole NMe $), 5 \cdot 63 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right.$, exchanged in $\left.\mathrm{D}_{2} \mathrm{O}\right), 2 \cdot 6-$ $3.2(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and $2.39(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, low-field half of tosyl signal): see spectra reported for similar compounds. ${ }^{11}$

A sample of compound (II; R=Ts) (10 mg) was boiled for 2 min with aqueous 2,4-dinitrophenylhydrazine hydrochloride solution (Brady's reagent). A yellow solid separated; this was washed several times with boiling $2 \mathrm{~m}-$ hydrochloric acid and recrystallised from a little methanol, yielding formaldehyde dinitrophenylhydrazone, identical with an authentic sample (t.l.c. and u.v. spectrum: $\lambda_{\max }$ 345 nm). ${ }^{16}$

3-Dimethylaminomethyl-1-methyl-2-vinylindole (XI).Compound (I) (2 g) was dissolved in benzene (20 ml) and methyl iodide (5 ml) was added. Next day the solid (90% yield) was collected and recrystallised from aqueous methanol to give plates, m.p. $259-260^{\circ}$ (decomp.). The methiodide ($1 \cdot 1 \mathrm{~g}$) was boiled for 2 h in methanol (10 ml) and 4 m -sodium hydroxide (50 ml). The solution was extracted with benzene, the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue was crystallised from light petroleum (b.p. $60-80^{\circ}$) to give prisms $(0.40 \mathrm{~g})$, m.p. $57-$ 59° (Found: C, 78.4; H, 8.5; N, $12.9 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires C, $78.5 ; \mathrm{H}, 8.4 ; \mathrm{N}, 13.1 \%$); $\lambda_{\text {max }} 228$ and $303 \mathrm{~nm}(\varepsilon$ $17,000$ and 8700$)$; $\tau\left(\mathrm{CDCl}_{3}\right) 7.73\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 6.43(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2} \cdot \mathrm{NMe}_{2}$), $6 \cdot 30(3 \mathrm{H}, \mathrm{s}$, indole NMe), $4.55(1 \mathrm{H}, \mathrm{q}, J 2 \cdot 0$ and $\left.11.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right), 4.15\left(1 \mathrm{H}, \mathrm{q}, J 2.0\right.$ and $\left.18.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{C}}\right), 3.15$ $\left(1 \mathrm{H}, \mathrm{q}, J 11.5\right.$ and $\left.18.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right), 2.5-3.0(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, and $2 \cdot 2-2 \cdot 35(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), m / e 214(M, 30 \%)$ and $170(M-$ $\mathrm{NMe}_{2}, 100 \%$) (no other peaks of intensity greater than $12 \%)$.

1,2-Dimethyl-3- p-tolylsulphonylaminoindole ${ }^{2}$ had $\lambda_{\max }$ 225,283 , and $291 \mathrm{~nm}(\varepsilon 36,700,7570$, and 6670$)$.

Reaction between 1,4-Dihydro-9-methylcarbazole and Tosyl Azide.-1,4-Dihydro-9-methylcarbazole $(0 \cdot 177 \mathrm{~g})^{17}$ and tosyl azide (0.280 g) were boiled for 5 h in ethanol $(2 \mathrm{ml})$. The solution was cooled and the solid ($0 \cdot 141 \mathrm{~g}$) which separated was identified as 9 -methylcarbazole (m.p.; R_{F} value; i.r. spectrum). Evaporation of the ethanolic mother liquors yielded toluene- p-sulphonamide (R_{F} value and i.r. spectrum).
[1/2242 Received, 26th November, 1971]
${ }^{16}$ E. A. Braude and E. R. H. Jones, J. Chem. Soc., 1945, 498; J. R. Dyer, ' Applications of Absorption Spectroscopy of Organic Compounds,' Prentice-Hall, New Jersey, 1965, p. 10.
${ }^{17}$ S. O'Brien and D. C. C. Smith, J. Chem. Soc., 1960, 4612.

[^0]: 1 A. S. Bailey, R. Scattergood, and W. A. Warr, J. Chem. Soc. (C), 1971, (a) p. 2479, (b) p. 3769.

[^1]: 2 A. S. Bailey and J. J. Merer, J. Chem. Soc. (C), 1966, 1345.
 ${ }^{3}$ I. Baxter and D. W. Cameron, J. Chem. Soc. (B), 1971, 696.

[^2]: ${ }^{4}$ L. J. Dolby and G. W. Gribble, Tetrahedron, 1968, 24, 6380.
 ${ }^{5}$ H. Böhme, K. Hartke, and A. Müller, Chem. Ber., 1963, 96,
 595; H. Böhme and A. Müller, Arch. Pharm., 1963, 296, 54.
 ${ }^{6}$ H. A. Hagemar, Org. Reactions, 1953, 7,' 211.

[^3]: ${ }^{7}$ J. D. Albright and L. Goldman, J. Amer. Chem. Soc., 1969, 91, 4317.
 ${ }_{8}$ J. J. D. Hobson and J. G. McCluskey, J. Chem. Soc. (C), 1967, 2015.

[^4]: ${ }^{9}$ Houben-Weyl, ' Methoden der Organischen Chemie,' 1955, vol. 9, p. 654.

